skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Metzger, B_D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present uniform modeling of eight kilonovae, five following short gamma-ray bursts (GRBs; including GRB 170817A) and three following long GRBs. We model their broadband afterglows to determine the relative contributions of afterglow and kilonova emission. We fit the kilonovae using a three-component model inMOSFiT, and report population median ejecta masses for the total, blue (κB = 0.5 cm2g−1), purple (κP = 3 cm2g−1), and red (κR = 10 cm2g−1) components. The kilonova of GW170817 is near the sample median in most derived properties. We investigate trends between the ejecta masses and the isotropic-equivalent and beaming-correctedγ-ray energies (Eγ,iso,Eγ), as well as rest-frame durations (T90,rest). We find long GRB kilonovae have higher median red ejecta masses (Mej,R ≳ 0.05M) compared to on-axis short GRB kilonovae (Mej,R ≲ 0.02M). We also observe a weak scaling between the total and red ejecta masses withEγ,isoandEγ, though a larger sample is needed to establish a significant correlation. These findings imply a connection between merger-driven long GRBs and larger tidal dynamical ejecta masses, which may indicate that their progenitors are asymmetric compact object binaries. We produce representative kilonova light curves, and find that the planned depths and cadences of the Rubin and Roman Observatory surveys will be sufficient for order-of-magnitude constraints onMej,B(and, for Roman,Mej,PandMej,R) of future kilonovae atz ≲ 0.1. 
    more » « less
  2. Abstract We present 1–12 GHz Karl G. Jansky Very Large Array observations of nine off-nuclear persistent radio sources (PRSs) in nearby (z≲ 0.055) dwarf galaxies, along with high-resolution European VLBI Network observations for one of them at 1.7 GHz. We explore the plausibility that these PRSs are associated with fast radio burst (FRB) sources by examining their properties—physical sizes, host-normalized offsets, spectral energy distributions (SEDs), radio luminosities, and light curves—and compare them to those of the PRSs associated with FRB 20121102A and FRB 20190520B, two known active galactic nuclei (AGN), and one likely AGN in our sample with comparable data, as well as other radio transients exhibiting characteristics analogous to FRB-PRSs. We identify a single source in our sample, J1136+2643, as the most promising FRB-PRS, based on its compact physical size and host-normalized offset. We further identify two sources, J0019+1507 and J0909+5655, with physical sizes comparable to FRB-PRSs, but which exhibit large offsets and flat spectral indices potentially indicative of a background AGN origin. We test the viability of neutron star wind nebula and hypernebula models for J1136+2643 and find that the physical size, luminosity, and SED of J1136+2643 are broadly consistent with these models. Finally, we discuss the alternative interpretation that the radio sources are instead powered by accreting massive black holes, and we outline future prospects and follow-up observations for differentiating between these scenarios. 
    more » « less
  3. Abstract The existence of a secondary (in addition to compact object mergers) source of heavy element (r-process) nucleosynthesis, the core-collapse of rapidly rotating and highly magnetized massive stars, has been suggested by both simulations and indirect observational evidence. Here, we probe a predicted signature ofr-process enrichment, a late-time (≳40 days post-burst) distinct red color, in observations of gamma-ray burst supernovae (GRB-SNe), which are linked to these massive star progenitors. We present optical to near-IR color measurements of four GRB-SNe atz≲ 0.4, extending out to >500 days post-burst, obtained with the Hubble Space Telescope and large-aperture ground-based telescopes. Comparison of our observations to models indicates that GRBs 030329, 100316D, and 130427A are consistent with both no enrichment and producing 0.01–0.15Mofr-process material if there is a low amount of mixing between the innerr-process ejecta and outer supernova (SN) layers. GRB 190829A is not consistent with any models withr-process enrichment ≥0.01M. Taken together the sample of GRB-SNe indicates color diversity at late times. Our derived yields from GRB-SNe may be underestimated due tor-process material hidden in the SN ejecta (potentially due to low mixing fractions) or the limits of current models in measuringr-process mass. We conclude with recommendations for future search strategies to observe and probe the full distribution ofr-process produced by GRB-SNe. 
    more » « less